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Executive Summary 

The 2005 Department of Defense Guide for Achieving Reliability, Availability, and Maintainabil-
ity (RAM) emphasized the importance of systems engineering design analysis over predicting 
software reliability based an analysis of faults found during integration. Requirements and design 
faults have accounted for 70 percent of the errors in embedded safety-critical software. The re-
work effort to correct such errors found during testing and system integration can be 300 to 1,000 
times the cost of in-phase correction. The existing build and test paradigm for developing reliable 
systems is not feasible with the increasing complexity of software-intensive systems.  

The different characteristics of hardware and software failures require analysis techniques distinct 
from those used for hardware reliability. For example, the cause of a hardware device failure can 
often be traced to a single event, e.g., the failure of a specific component. But a failure for a com-
plex system is likely the result of a combination of events. None of those events can individually 
cause a failure, but the concurrence of all of them leads to a failure.  

Improving software reliability can require significant changes in development and acquisition 
practices and will involve a learning curve for both acquirers and suppliers. Realistically, the 
changes have to be incremental. This document describes ways that the analysis of the impact of 
potential software failures (regardless of cause) can be incorporated into acquisition practices.  

Software reliability is a statistical measure: the probability that a system or component performs 
its required functions under stated conditions for a specified period of time, i.e., no failures occur 
over that time period. It is not a measure of risk for a specific failure. For example, a highly relia-
ble system is neither necessarily safe nor secure. Safety and security depend on mitigating specific 
kinds of faults. 

Mitigating specific faults is more the province of system and software assurance. System assur-
ance is defined as the confidence that a system behaves as expected. The term assurance is often 
associated with safety, but is increasingly applied to other attributes such as security and reliabil-
ity. For security, the expected behavior is the desired system response to conditions created by an 
attacker.  

A formal review of a design as recommended by the DoD RAM Guide requires that we can ana-
lyze how the engineering decisions support the reliability requirements. That analysis has to be 
described in a concise and understandable way. Software assurance provides mechanisms to do 
that. For example, an early design may be incomplete, may have overlooked some hazards or may 
have made invalid or inconsistent development or operating assumptions. An objective of an early 
design review should be to identify such concerns when they can be more easily fixed. An assur-
ance case provides a systematic way for doing such a review.  

The Software Engineering Institute has applied software assurance techniques in the early phases 
of the system development lifecycle for a large DoD system of systems. In addition to supporting 
technical analysis, the results of the assurance analysis can be displayed in a way that gives man-
agers answers about the design progress that are demonstrably rooted in facts and data instead of 



 

CMU/SEI-2014-SR-008 | x 

opinions based on hope and best intensions. In addition, the analysis provides a way to show the 
effects of a specific development shortfall. 
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Abstract 

The 2005 Department of Defense Guide for Achieving Reliability, Availability, and Maintainabil-
ity (RAM) recommended an emphasis on engineering analysis with formal design reviews with 
less reliance on RAM predictions. A number of studies have shown the limitations of current sys-
tem development practices for meeting these recommendations. This document describes ways 
that the analysis of the potential impact of software failures (regardless of cause) can be incorpo-
rated into development and acquisition practices through the use of software assurance. 
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1 Introduction 

The limitations of current system development practices for meeting reliability requirements are 
evident in safety-critical systems where system-level faults due to software have increasingly 
dominated the rework effort. Several studies of safety-critical systems show that while 70 percent 
of errors in embedded safety-critical software are introduced in the requirements and architecture 
design phases [Feiler 2012], 80 percent of all errors are only found at system integration or later. 
In particular, these errors were not found in unit testing. The rework effort to correct requirement 
and design problems in later phases can be as high as 300 to 1,000 times the cost of in-phase cor-
rection, and undiscovered errors likely remain after that rework. 

The 2005 Department of Defense (DoD) Guide for Achieving Reliability, Availability, and Main-
tainability (RAM) identified four steps required for RAM improvement. 

 Step 1: Understand and document user needs and constraints 

 Step 2: Design and redesign for RAM 

 Step 3: Monitor field performance 

 Step 4: Produce reliable and maintainable systems 

The Guide noted that one of reasons for reliability failures in DoD systems was too great of reli-
ance on predictions. For example, the recommendations listed in Step 2 of the Guide include 

 Emphasize systems engineering design analysis and rely less on RAM predictions. 

Improving systems engineering designs for software reliability starts with an understanding 
for how the characteristics of software failures require analysis techniques distinct from those 
used for hardware reliability.  

An emphasis on systems engineering design analysis and less reliance on RAM predictions 
provides a way to reduce specific system risks. Software reliability is a statistical measure: 
the probability that a system or component performs its required functions under stated condi-
tions for a specified period of time, i.e., no failures occur over that time period. It is not a 
measure of risk for a specific failure. The requirements for military systems typically identify 
specific faults that must be mitigated. 

System assurance provides the techniques for mitigating the risk of specific system failures. 
Its importance is recognized by its appearance in many of the recommendations that appear in 
The National Research Council report, Critical Code: Software Producibility for Defense.1 

The above items are introduced later in this section. 

 Conduct formal design reviews for reliability and maintainability and in particular use an im-
partial, competent peer to perform the review.  

 
1  http://www.nitrd.gov/nitrdgroups/images/6/64/CritCodev27assurHCSS.pdf 
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An objective of a review is to confirm that an implementation based on a design is likely to 
meet requirements. For example, a review of a disk drive design would check how the tech-
niques used manage read errors or surface defects. A review of a software design might need 
to verify if the applied software engineering choices sufficiently mitigate a fault. Hardware 
reliability such as for a disk drive can draw on documented design rules based on actual us-
age. Software reliability has not matured to the same state. A description of the specific engi-
neering decisions and the justification for those choices has to be provided for the review. An 
assurance technique called an assurance case provides a way to document the reasoning and 
evidence that support the engineering choices. 

Assurance cases are explained in Section 2 by the use of examples.  

1.1 Software and Hardware Differences 

The differences between software and hardware reliability are reflected in the associated failure 
distribution curves. A bathtub curve shown in Figure 1 describes the failure distribution for hard-
ware failures. The bathtub curve consists of three parts: a decreasing failure rate (of early fail-
ures), a constant failure rate (of random failures), and an increasing failure rate (of wear-out fail-
ures) over time. Software defects exist when a system is deployed. Software’s failure distribution 
curve, also shown in Figure 1, reflects changes in operational conditions that exercise those de-
fects as well as new faults introduced by upgrades. The reduction of errors between updates can 
lead system engineers to make reliability predictions for a system based on a false assumption that 
software over time is perfectible. Complex software systems are never error-free. 

Table 1 lists some of the challenges for implementing the DoD Guide recommendations for soft-
ware reliability. These items are analyzed in the Software Engineering Institute (SEI) white paper 
Evaluating Software’s Impact on System and System of Systems Reliability [Goodenough 2010]. 
This report suggests some techniques that address those challenges.  

 

Figure 1: Failure Distribution Curves 

Hardware failures increase over time because of wear. The risk of failures for a complex system 
can also increase over time but for different reasons. Leveson makes such a claim for the risk of 
safety failures [Leveson 2011]. She identified three reasons for this trend: (1) the impact of the 
operational environment, (2) unintended effects of design changes, and (3) changes in software 
development processes, practices, methods, and tools. 
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Table 1: Software Reliability Challenges 

Software impact on sys-
tems 

The recommended development activities depend on understanding the impact that 
software can have on platform reliability, availability, and maintainability. Improving de-
velopment activities devoted to analyzing the potential impact of software failures (re-
gardless of cause) is needed to minimize software’s impact on system aborts (SA) and 
essential function failures (EFF) in complex stand-alone systems as well as in systems 
of systems. 

Possible failure modes Implement a software reliability improvement process similar to what is done for hard-
ware. Software failure modes may be the loss or reduction in a capability.  

For each failure mode, additional analysis is needed to show what the recovery method 
will be, e.g., after a software-caused failure 

 Is a system reboot necessary? 

 Can the operator fall back to a previously saved “good” state and try again? 

 Is there an alternate method that might avoid the subsystem that isn’t work-
ing? 

Redesign analysis based 
on failure impact 

The safety-critical, space-borne, and avionics systems where software dependence is 
understood give more attention to failure impact and redesign analysis activities than is 
commonly observed.  

But as noted by the DoD RAM Guide, improving the reliability of software intensive sys-
tems requires determining if the engineering decisions have sufficiently mitigated the 
effects of a set of hazards. As with the safety-critical systems such analysis requires 
redesign activities based on a concise and understandable description of the decisions 
made. 

Integration of hardware 
and software failure 
analysis 

Too often software and hardware techniques, as traditionally considered, are done inde-
pendently of each other; each assumes the other is 100 percent reliable, and the analy-
sis does not consider interactions between software and non-computer hardware. There 
may be an implicit assumption that software quality is always improving as once a prob-
lem is found, it can be removed and will never occur again. But such an assumption is a 
reliability risk. Software is never perfect so a system needs to be designed to recover 
from (currently unknown) faults whose effects are encountered only rarely. 

1.2 Software Reliability and Software Assurance 

Software reliability is a statistical measure: the probability that a system or component performs 
its required functions under stated conditions for a specified period of time, i.e., no failures occur 
over that time period. It is not a measure of risk for a specific failure. For example, a highly relia-
ble system is neither necessarily safe nor secure. Safety and security depend on mitigating specific 
kinds of faults.  

System and software assurance was identified as one of four key technologies required for ad-
dressing the challenges of qualifying increasingly software-reliant, safety-critical systems by 
software studies done by the National Research Council [Jackson 2007], NASA [Dvorak 2009], 
the European Space Agency (ESA) [Conquet 2008], the Aerospace Vehicle Systems Institute 
(AVSI) [Feiler 2009a], and AED [Boydston 2009].  

The Open Group Real Time and Embedded Systems Forum reached a similar conclusion for de-
pendability (includes reliability, availability, performance, security, integrity, and safety) [Open 
Group 2013]. Conventional technologies, such as software processes and/or formal methods, are 
not sufficient to meet dependability requirements for computing systems that are used for long 
period of times and are continually upgraded to reflect evolving technologies and changing regu-
lations and standards.  

The difficulties in meeting requirements for the attributes that The Open Group includes under 
dependability arise when a system encounters adverse rather than normal conditions. Security is 
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an example. Valid input data does not compromise a system. Security attacks frequently succeed 
because of unexpected system behavior when it processes invalid input.  

A reference to the application of software assurance to a specific system attribute often includes 
the attribute name. Software assurance applied to safety is referred to as safety assurance. The 
definition of software assurance in this document does not reference a specific system property. 

Software Assurance: The application of technologies and processes to achieve a required 
level of confidence that software systems and services function in the intended manner. 

1.3 Security Example 

Security is a good example for the importance of considering software failures during design. Se-
curity is a system property that has often been implemented by adding preventative security con-
trols such as user authentication and authorization, data encryption, and network data flow control 
mechanisms. But attack tactics change, and systems now are frequently compromised exploiting a 
mistake made during the development of application software such as not validating input values. 
Such vulnerabilities enable attackers to go around the strongest security controls. The more than 
900 known software vulnerabilities exceed the protective capabilities of security controls. 

 
 

Figure 2: Security Controls 

We needed to reduce the number of inadvertent vulnerabilities created during development. Vul-
nerability elimination based only testing as shown in Figure 3 was not satisfactory. Attackers were 
exploiting security risks created by the functional and operational requirements. Such risks had to 
be considered during the design. How could externally supplied data adversely affect a design of a 
function? For example, a detailed design could propose using a relational database query language 
to retrieve data required to meet a functional requirement. But the design also has to consider the 
security risks associated with that implementation. An attack tactic called a SQL-Injection has 
repeatedly exploited the use of a database query language to access supposedly inaccessible in-
formation or to make unauthorized changes to the data store. The detailed design has to incorpo-
rate the known mitigations for this risk, i.e., security has to be built into the software rather than 
being added later. This change in perspective is also reflected in version 4 of NIST 800-53, Rec-
ommended Security Controls for Federal Information Systems and Organizations, where “build-
ing it right” is an essential component for developing a secure system.  
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Figure 3: Vulnerability Management 

Summary 

Improving system assurance is the objective for many of the recommendations that appear in The 
National Research Council report, Critical Code: Software Producibility for Defense. The feasi-
bility of achieving high assurance for a particular system is strongly influenced by early engineer-
ing choices. In particular, assessing assurance as a system is being developed had a high potential 
for improving the overall assurance of systems. Such an approach can require significant changes 
in development and acquisition practices. But realistically, the changes have to be incremental. 
This document describes ways that the analysis of the potential impact of software failures (re-
gardless of cause) can be incorporated into acquisition practices. 
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2 Documenting Engineering Decisions 

A formal engineering review requires more than a description of a design. The objective is to 
identify design errors during the design and at the latest in the design review. Reliability depends 
on identifying and mitigating potential faults. A design review should verify that faults associated 
with important business risks have been identified and mitigated by specific design features.  

In this section we introduce the use of assurance cases to document engineering decisions. We 
begin by illustrating how the U.S. Food and Drug Administration (FDA) used an assurance case 
to improve the safety and reliability of a medical infusion pump.  

2.1 Medical Infusion Pumps 

A patient-controlled analgesia infusion pump is used to infuse a pain killer at a prescribed basal 
flow rate which may be augmented by the patient or clinician in response to patient need within 
safe limits. Infusion pumps in general have reduced medication errors and improved patient care 
by allowing for a greater level of control, accuracy, and precision in drug delivery than was ob-
tainable using previous, more labor intensive techniques. 

The FDA uses a premarket assessment to certify the safety and reliability of medical infusion 
pumps before they are sold to the public. In spite of the FDA’s assessment, too many approved 
pumps exhibited hardware and software defects in the field, leading to death or injury of patients 
[FDA 2010]. 

The FDA requires that class III medical devices, which include infusion pumps, undergo a scien-
tific and regulatory review to evaluate their safety and effectiveness. But infusion pumps that 
passed such a review had been associated with persistent safety problems. From 2005 through 
2009, 87 infusion pump recalls were conducted by firms to address identified safety problems. 
The problems have been observed across multiple manufacturers and pump types. The FDA be-
came aware of many of the problems only after they occurred in actual use. These defects had not 
been found during development by testing and other methods.  

After an analysis of pump recalls and adverse events the FDA concluded that many of the prob-
lems appeared to be related to deficiencies in device design and engineering. To address this prob-
lem, the FDA has proposed to change the premarketing scientific review to identify such prob-
lems before a pump is marketed. The changes meet the DoD RAM Guide recommendations, i.e. 
revise the premarket assessment to evaluate how the engineering done by a manufacturer reduced 
the health risks in using such a pump.  

The health risks associated with infusion pumps are shown in Table 2. That table also includes the 
hazards that could affect those health risks that were identified during the analysis of pump fail-
ures. A new FDA requirement for the premarket scientific review is for a pump manufacturer to 
make a convincing argument for why the engineering approach used sufficiently reduces the 
health risks.  

With the large number engineering defects that had been identified, the FDA expected that most 
new infusion pumps would have new implementations of software or include changes in materi-
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als, design, performance, or other features. The manufacturers had to demonstrate that the new 
pumps were as safe as the ones they replaced and that changes made in the pumps and in the en-
gineering methods did not raise different questions of safety and effectiveness compared to exist-
ing devices.  

Table 2: Infusion Pump Hazards and Health Risks 

Hazards Health Risks 

Software Environmental Overdose Trauma 

Operational Mechanical Air embolism Exsanguination 

Electrical Hardware Infection Electric shock 

Biological and 
Chemical 

Use Allergic response Underdose 

  Delay of therapy  

Specific hazards include air in drug delivery line, tampering (for example, by a patient during 
home use to adjust drug delivery), network error, false alarm or lack of an alarm caused by a sen-
sor that is out of calibration, alarm priorities improperly set, incorrect settings of alarm thresholds, 
and software runtime error. For serious hazards, an alarm should sound.  

The mitigation of the spectrum of hazards identified by the FDA requires an integrated hardware 
and software solution. For example, a manufacturer has to demonstrate that a pump’s software has 
been designed to analyze the data from multiple sensors to correctly identify and respond to ad-
verse conditions.  

A manufacturer, on the submission of a pump, is to provide evidence and an argument that sup-
ports the claim that the pump has been engineered to safely manage the identified hazards. The 
FDA’s task is to determine if the supplied materials are convincing so that the pump can be used 
by the public. To aid its analysis, the FDA suggested that the manufacturers use an assurance case 
as a way to structure the information in a concise and understandable manner. 

Assurance case: a documented body of evidence that provides a convincing and valid argu-
ment that a specified set of critical claims about a system’s properties are adequately justified 
for a given application in a given environment. 

An assurance case does not imply any kind of guarantee or certification. It is simply a way to 
document the rationale behind system design decisions. The FDA explicitly stated that pumps 
could not be designed to be error free.  

Using only text to document and justify the engineering decisions for an infusion pump would 
involve 72 combinations of hazards and health risks. The aspects of the justification of a low risk 
of an overdose associated with environmental hazards may also support a claim for a low risk of 
an overdose for operational hazards. Showing such the relationships among the justifications is 
easier to do with a graphical notation than with text.  

The Goal Structured Notation (GSN) shown in Figure 4 is widely used for assurance cases [Kelly 
2004].  



 

CMU/SEI-2014-SR-008 | 8  

 

Figure 4: Goal Structured Notation 

2.2 Infusion Pump Assurance Case 

A sketch of an infusion pump assurance case is shown in Figure 5. The strategy box says that 
safety of the pump will be shown by demonstrating that each of the nine health risks has been mit-
igated, i.e., divide the initial claim into—it is hoped—simpler subclaims. The overdose subclaim 
is then divided into subclaims based on the hazards that could result in an overdose. For example, 
an overdose could be caused by environmental hazards such as a high temperature which led to a 
pump malfunction. It would also result from a patient tampering with unit or from cell phone in-
terference.  

 

Figure 5: Using GSN for Infusion Pump Assurance Case 

A manufacturer needs to show that the sensors have been engineered to monitor the state of phys-
ical configuration and the flow of the medicine and that the software has been designed to recog-
nize hazards based on the aggregate of sensor values and take the action as defined by the safety 
requirements.  

For example, if an overdose has a high health risk, then an alarm should sound. An overdose can 
be the result of a free flow of the medication because the valves in the delivery paths are broken 
or the delivery path is damaged, creating a vent in a line. The high health risk requires that an in-
fusion pump be designed to be very sensitive to hazards that could cause an overdose, i.e., the 
percentage of such hazardous condition that are not recognized has to be low (see Table 3). 
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There are other cases where the recognition has to be what is called specific, i.e., there is a high 
probability that the condition recognized by the pump actually exists. A warning light that comes 
on too often when there are no problems will soon be ignored.  

It should not be surprising that testing alone had not provided sufficient evidence to demonstrate 
acceptably safe infusion pump behavior. The justification had to consider any safety issues raised 
by how the infusion pump software responded to the interactions of the data from multiple sen-
sors. The sensitivity and specificity of a pump’s hazard tests had to be consistent with the associ-
ated health risks, but such analysis requires the data shown in Table 3 for each hazard considered. 
That analysis depends on applying techniques such as simulations, static analysis, and state ma-
chine modeling. The lack of that kind of engineering analysis during a design is consistent with 
the number of engineering and manufacturing defects identified by the FDA.  

Table 3: Evaluating Pump Hazard Recognition 

 

2.3 Fault Reduction Example 

This example shows the benefits of using an assurance case to demonstrate a system met a fault 
reduction requirement. The system uses primary and secondary processors for some number of 
essential services. The primary and secondary processors must periodically exchange information 
to maintain consistency, and there is a risk that an exchange of faulty data could lead to the loss of 
both the primary and secondary servers.  

The developer was asked to write a report that showed how the design had sufficiently reduced 
the risk of a failure caused by an exchange of faulty information. But a report such as the one in 
shown in Table 4 is unlikely to convince an expert reviewer of the sufficiency of the design. 
Many of the statements are ambiguous. The software safeguards listed in the third column are not 
specified. A reviewer would expect to see the subsystem design as a mitigation but would imme-
diately question that functional requirements reduced faults. The latter are typically a source of 
faults. The imprecision continues in the verification column. No one is going to state a validation 
is not extensive or that reviews are superficial. Tests results are noted. But how do the results sup-
port the fault reduction claim? 
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Table 4: Fault Management Report 

Cause or Fault 
Effect/Severity/

Likelihood 
Mitigation Verification 

Faulty data exchanged 
among redundant 
computers causes all 
computers to fail.  

This could occur because 
of Improper requirements, 
incorrect coding of logic, 
incorrect data definitions 
(e.g., initialized data), 
and/or inability to test all 
possible modes in the SW. 

Effect: Loss of 
operation of 
system during 
critical phase, 
leading to loss of 
life. 

Severity: 
Catastrophic 

Likelihood: 
Improbable 

Class: Controlled 

Software safeguards reduce, 
to the maximum extent 
feasible, the possibility that 
faulty data sent among 
redundant computers causes 
them to fail. 

Program Development 
Specifications and Functional 
SW Requirements 

Subsystem design and 
functional interface 
requirements are used in the 
design and development of 
the relevant SW. 

 
 

Extensive validation and testing 
are in place to minimize generic 
SW problems. The contractors 
must perform rigorous reviews 
throughout the SW definition, 
implementation, and verification 
cycles. These review processes 
cover requirements, design, code, 
test procedures and results, and 
are designed to eliminate errors 
early in the SW life cycle. 

After completing system level 
verification, critical SW undergoes 
extensive integrated HW/SW 
verification at facility XXX. 

Extensive verification is 
independently performed at facility 
XXX, using hardware and software 
maintained to duplicate the 
configuration of the fielded 
system. 

2.4 Replace Fault Tolerance Report with an Assurance Case 
Justification 

An assurance case provides a more effective way to convey the engineering information in this 
report to both experts and non-experts. In this example, the primary claim is 

Claim: The likelihood of complete failure of primary and backup computers during a critical 
mission phase has been reduced as low as reasonably practicable (ALARP). 

The assurance case shown in Figure 6 documents those engineering decisions and the role that the 
verification items, the evidence, have in justifying a claim.  



 

CMU/SEI-2014-SR-008 | 11  

 

Figure 6: Assurance Case for Fault Reduction Report 

The claim for the reduction of failures for the redundant computers depends on two subclaims:  

 attempts to transfer invalid data are detected and handled appropriately 

  only essential exchanges are done  

The software safeguards are explicitly identified as the data validity checks made when data is 
transferred. The functional requirements are not mitigations. The mitigation is removing unneces-
sary exchanges. Only those data exchanges required by the functional requirements are done. The 
assurance case also shows the role of the tests and reviews. For example, functionality is tested 
whenever data exchanges were deleted.  

Summary 

The infusion pumps’ failures to meet the reliability requirements led to health risks. Verifying that 
those risks have been sufficiently mitigated during the FDA review required evidence that showed 
how the design of the pump safely mitigated each of the identified hazards. A formal design re-
view of the reliability of a military system also needs to verify that a design adequately mitigates 
the possible system failures. Such a design analysis requires a concise and understandable way to 
describe the association between engineering decisions and mitigation of a hazard. As shown with 
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the infusion pump example, an assurance case can convey that information to experts and non-
experts. 
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3 Causal Analysis of Software Failures 

The DoD RAM Guide recommendation for better engineering analysis applies to the causal anal-
ysis of a failure or potential failure. The effectiveness of a design in improving reliability depends 
on how well the causal analysis has identified and prioritized the threats. 

An event-based causal analysis is often used for a hardware failure. Such an analysis identifies the 
sequence of events that preceded the failure, which are then analyzed to identify a root cause. But 
such an event-based analysis for failure with a complex system can be misleading. Leveson’s 
analysis of safety failures showed that the causes were frequently the concurrent occurrence of 
several events. The absence of any one of those events would have prevented the failure.  

As example of the weaknesses of an event-based analysis for complex systems, consider the re-
lease of methyl isocyanate (MIC) from a Union Carbide chemical plant in Bhopal, India in 1984. 
A relatively new worker had to wash out some pipes and filters that were clogged. MIC produces 
large amounts of heat when in contact with water, and the worker did close the valves to isolate 
the MIC tanks from the pipes and filters being washed. However, a required safety disk which 
backed up the valves in case they leaked was not inserted. The valves did leak—which lead to 
2,000 fatalities and 10,000 permanent injuries. The analysis identified the root cause as an opera-
tor error. Charles Perrow’s2 analysis of the Bhopal incident concluded that there was no root 
cause, and that given the design and operating conditions of the plant, an accident was just wait-
ing to happen. His argument was 

However [water] got in, it would not have caused the severe explosion  

 had the refrigeration unit not been disconnected and drained of Freon,  

 or had various steps been taken at the first smell of MIC instead of being put off until the 

tea break,  

 or had the scrubber been in service,  

 or had the water sprays been designed to go high enough to douse the emissions,  

 or had the flare tower been working and been of sufficient capacity to handle a large ex-

cursion. 

3.1 2003 Power Grid Blackout 

The 2003 power grid blackout was a reliability failure for the power grid control system for an 
Ohio utility. There had only been minor errors encountered with that control system, and hence 
reliability-based RAM predictions would have been high. This section describes the engineering 
review that followed the blackout that came to the opposite conclusion. That review considered 
the blackout as a software assurance failure and implicitly developed an assurance case to identify 
the system weaknesses. 

 
2  The Habit of Courting Disaster, Charles Perrow, The Nation (October 1986) 346-356. 



 

CMU/SEI-2014-SR-008 | 14  

3.2  The Power Grid Failure 

On August 14, 2003, approximately 50 million electricity consumers in Canada and the northeast-
ern U.S. were subject to a cascading blackout. The events preceding the blackout included a mis-
take by tree trimmers in Ohio that took three high-voltage lines out of service and a software fail-
ure (a race condition3) that disabled the computing service that notified the power grid operators 
of changes in power grid conditions. With the alarm function disabled, the power grid operators 
did not notice a sequence of power grid failures that eventually lead to the blackout [NERC 2004].  

The technical analysis of the blackout explicitly rejected tree-trimming practices and the software 
race condition as root causes. Instead if we phrase the conclusion like Perrow’s, it would be  

However the alarm server failed the blackout would not have occurred  

 if the operators had not been unaware of the alarm server failure,  

 or if a regional power grid monitor had not failed,  

 or if the recovery of the alarm service had not failed,  

 or …... [NERC 2004] 

A basic understanding power grid reliability requirements and monitoring capabilities is required 
to analyze the causes and mitigations for the blackout. Power grid operators typically have 30 to 
60 minutes to respond to an alarm raised because a generator is out of service or adverse condi-
tions have led to transmission lines being automatically disconnected from the power grid. The 
technical analysis sponsored by the North American Electric Reliability Corporation (NERC) 
provides the following summary of the reliability requirements and power grid monitoring activi-
ties. 

Reliability requirement: The electricity industry has developed and codified a set of mutu-
ally reinforcing reliability standards and practices to ensure that system operators are pre-
pared to deal with unexpected system events. The basic assumption underlying these stand-
ards and practices is that power system elements will fail or become unavailable in 
unpredictable ways. The basic principle of reliability management is that “operators must 
operate to maintain the safety of the system they have available.” 

Power grid monitoring: It is common for reliability coordinators and control areas to use a 
state estimator to monitor the power system to improve the accuracy over raw telemetered 
data. The raw data are processed mathematically to make a “best fit” power flow model, 
which can then be used in other software applications, such as real-time contingency analy-
sis, to simulate various conditions and outages to evaluate the reliability of the power sys-
tem. Real-time contingency analysis is used to alert operators if the system is operating inse-
curely; it can be run either on a regular schedule (e.g., every five minutes), when triggered 
by some system event (e.g., the loss of a power plant or transmission line), or when initiated 
by an operator [NERC 2004]. 

 
3  The software failure was caused by a race condition. An error in the implementation of the software controls 

that managed access to the data by multiple processes caused the alarm system to stall while processing an 
event. With that software unable to complete that alarm event and move to the next one, the alarm processor 
buffer filled and eventually overflowed. 
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3.2.1 Software Assurance Analysis 

The software subsystem that provided audible and visual indications when a significant piece of 
equipment changed from an acceptable to problematic status failed at 14:14.  

 The data required to manage the utility’s power grid continued to be updated on a power grid 
operator’s control computer. 

 After the server failure the power grid operator’s displays did not receive any further alarms, 
nor were any alarms being printed or posted on the alarm logging facilities.  

 The power grid operators assumed that alarm service was operating and did not observe that 
system conditions were changing.  

A key observation by the technical reviewers was that the blackout would not have occurred if the 
operators had known the alarm service had failed. Instead of analyzing the details of the alarm 
server failure, the reviewers asked why the following software assurance claim had not been met.  

Claim: Power grid operators had sufficient situational awareness to be able to manage it in a 
manner that meets the reliability requirements. 

The blackout analysis then identified multiple ways that the situational awareness claim could be 
satisfied. Figure 7 shows those possibilities as an assurance case where only one out of the six 
subclaims is required. For example, a 10-minute recovery time for the alarm server should be suf-
ficient. Responses to adverse power grid conditions can often take an hour or longer. The level of 
confidence required for an electric utility requires concurrently available alternatives. An imple-
mentation of all six is realistic.  

 

Figure 7: Alternate Ways to Provide Situational Awareness 

The description of the alternatives and their status at the time of the blackout is as follows: 

 The alarm server recovery service was designed for a hardware failure. The alarm service did 
fail over to the secondary server, but the primary server had stalled because of the race con-
dition prevented it from accessing data. The secondary server was in the same stalled state. A 
warm reboot of the alarm service failed. The supplier of that control system told the comput-
er support staff that a full restart of the energy management system was required which could 
take more than 30 minutes.  

 A dynamic map board or other type of display that showed data relative to locations on the 
grid might have enabled the operators to recognize significant line and facility outages with-
in the controlled area. Unlike many transmission system control centers, this utility power 
management center did not have a map board. 
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 The power grid operators could have been notified that the alarm service was not available 
by the computer support staff. But there was no formal procedure for such a notification. It 
appears that the operators only became aware of the lack of the alarm service about 90 
minutes after its failure and only 20 minutes in advance of the final cascade of failures. 

 The power grid operators could have learned of the change in conditions by looking at the 
output of the state estimators and real-time contingency analysis tools. But problems had 
been experienced with the automatic contingency analysis operation since the system was in-
stalled in 1995. As a result, the practice was for the operators or engineers to run contingen-
cy analysis manually as needed. Hence the operators did not access the contingency analysis 
results at any time that day. 

 The government contracts with independent organizations to monitor regional sections of the 
national power grid. The state estimator and network analysis tools at that site for this seg-
ment of the power grid were still considered to be in development on August 14 and were 
not fully capable of automatically recognizing changes in the configuration of the modeled 
system. The state estimator at the independent monitor went out of service when it failed to 
deal correctly with the failure of two lines. An operator mistake after the state estimator had 
been fixed led to a second failure. It did not return to service until after the cascade of fail-
ures had started. 

The analysis also said the lack of an automatic alarm failure system as one of the causes. An au-
tomatic notification existed, likely a heart-beat monitor that notified the secondary server when 
the primary one had failed. It should have been easy to use the same mechanism to also notify the 
computer support staff and the power grid operators in the event of a failure of one or both alert 
servers. 

3.2.2 Other Observations 

The power grid blackout is an example of a number of the software reliability challenges listed in 
Table 1.  

 A recovery from a failure mode corresponding to a software fault in the alarm server had not 
been considered. The IT support staff only determined on the day of the blackout that a full 
control system reboot would be required rather than just a restart of the alarm server.  

 The guidance in Table 1 recommends that the design for system recovery should assume that 
failures could arise from currently unknown or rarely occurring faults. Software perfection 
was implicitly assumed by the utility from two perspectives. There was likely over confi-
dence in the alarm server software and implicitly in the commercial organization that devel-
oped it. The IT support staff said they had encountered only minor problems with the alarm 
server. But the alarm software supported multi-tasking which should automatically raise reli-
ability concerns. Careful engineering is required to avoid race conditions when accessing and 
modifying shared data. If the engineering choice is to use semaphores, experience shows that 
race conditions are likely. Race conditions had not been observed with this software. A fault 
such as a race condition is easy to ignore as it will occur only for a very specific set of oper-
ating condition which may never occur. The only safe assumption is that unanticipated fail-
ures will occur. 
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 The utility had not explicitly considered how to continue operations if the alarm server re-
covery failed. The assurance case shown in Figure 7 demonstrated that a design that was 
very resilient, i.e., could tolerate the failure of any six of the claims.  

3.3 Sustainment  

As described in Section 1.2 the risk of a system failure can increase over time because of changes 
in operational conditions and work processes. An assurance case that documents the assumptions, 
argument, and evidence that justify a claim can be used to monitor how changes affect the confi-
dence associated with a claim. 

As an example, consider the assurance case for the utility shown in Figure 7. The utility did not 
provide a visual map, there was no requirement for the computer support staff to notify the opera-
tors of failures in the alarm service, and the alarm service recovery was designed only for a hard-
ware failure. The three remaining alternatives, the alarm service, operators monitoring the contin-
gency analysis, and the independent monitoring capability, were assumed by the utility to provide 
sufficient resiliency. But at some point after the installation of the control system, problems oc-
curred with the automatic execution of the contingency analysis tool. The loss of that automatic 
analysis would leave the utility dependent on a single internal resource, the alarm service. But the 
resultant significant reduction in resiliency did not appear to be considered when the decision was 
made that the operators should manually run that analysis only when needed. Now only two of the 
alternatives listed in the assurance case remained. Both of those alternatives failed the day of the 
blackout. A simple analysis of the assurance case supports a conclusion that a blackout was just 
ready to happen. That conclusion was strengthened as the NERC analysis team found deficiencies 
other than those that caused the 2003 blackout that—under different circumstances—could also 
have led to a blackout.  

Summary 

The 2003 electric power grid blackout is a good example of the kind of causal analysis that is re-
quired to improve the reliability of complex systems. A failure analysis based just on events could 
have concluded that the primary cause of the blackout was the failure of the alarm server caused 
by a race condition. The reliability problems were far more serious as the operational resiliency 
was so poor that a blackout was just ready to happen.  
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4 Analyzing the Confidence of an Assurance Case 

The participants in the recommended formal design reviews have to decide if they are confident 
that a proposed design will satisfy reliability requirements. An objective for incorporating soft-
ware assurance into that review is for that judgment to be based on more than opinion. An assur-
ance case provides a way to systematically do the analysis. 

How can we determine the confidence that a system will behave as expected? As noted in the dis-
cussion of the power grid blackout, a combination of conditions is frequently the cause of a soft-
ware system failure. It is impossible to examine every possible combination of conditions that 
could affect a system.  

But achieving that confidence is important to those acquiring the system, those developing the 
system, and those using the system. Such confidence should be based on concrete evidence and 
not just on an opinion of the developers or reviewers. An assurance case provides the argument 
and evidence. Our level of confidence depends on understanding which evidence leads to an in-
crease in the confidence that a system property holds and why specific evidence increases the con-
fidence. 

There are examples where confidence can be quantified. A Safety Integrity Level (SIL) is an ex-
ample of a well-defined confidence measure that has been applied to hardware devices. An SIL 
for a device is based on a risk analysis relative to a specific dangerous failure. But as noted in 
Goodenough (2012), confidence for software intensive systems is a slippery subject [Goodenough 
2012]. There is a subjective aspect to it, such as “I know that method is the best option.” We need 
a precise and understandable definition of confidence in order to know where apply scarce system 
development resources. Which aspects of a design most affect our level of confidence? Ongoing 
research has proposed several ways to analyze confidence for a software intensive system. 

4.1 Eliminative Induction 

One approach for confidence is implicitly applied during a system review and most likely during 
development. Instead of estimating the likelihood that a claim is true, consider the probability that 
the claim is false. For example, ask why the argument and evidence provided by a developer 
might be insufficient to justify the claim. For example,   

 The test plans did not include all of the hazards identified during design. 

 The web application developers had limited security experience.  

 The acquirer did not provide sufficient data to validate the modeling and simulations. 

 Integration testing did not adequately test recovery following component failures.  

It is not at all obvious, but such an approach is constructing an alternate assurance case for the 
same claim. Instead of constructing an argument for the validity of a claim, we identify the vari-
ous possibilities for why the claim is false. An assurance case consists of gathering evidence or 
performing analysis that removes those possibilities. The SEI refers to the graphical representa-
tion of the assurance case created by eliminating doubts as a confidence map. Each eliminated 
possibility removes a reason for doubt and thereby increases our confidence in the claim. The ex-
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pectation during a review is that the developer is able to show how to eliminate the doubts that are 
raised.  

 

Figure 8: Confidence Map 

A claim is tentative. We cannot deductively prove using the argument in an assurance case that 
the evidence E proves the claim C is true. Additional information could show that it is false. Ra-
ther our logic looks like  

if E then (usually) C unless R, S, T, … 

where R,S,T… are exceptions. The doubts identified during design review are the potential ex-
ceptions to the claim. Removing doubts about a claim is called eliminative induction. These ex-
ceptions are called defeaters. Each defeater is a source of doubt about the truth of a claim. The 
research done for confidence has identified three classes of defeaters that are applicable for a jus-
tification of an assurance claim. An assurance justification has the form 

Argument shows Evidence confirms Claim 

The three classes of defeaters are  

1. Doubt the claim: There is information that contradicts or rebuts a claim. The cause can be a 
combination of a poor argument and insufficient evidence. Referred to as rebutters in the lit-
erature. 

2. Doubt the argument: There are specific conditions under which the claim is not necessarily 
true even though the premises (i.e., evidence) are true. Such conditions create doubts or un-
dercut the validity of the argument. We can doubt the inference among claims or between a 
claim and its supporting evidence. Referred to as undercutters in the literature. 

3. Doubt the evidence: There are conditions that invalidate one or more of the premises. The 
argument is valid, but insufficient evidence weakens or undermines our confidence in the 
claim. Referred to as underminers in the literature. 

Removing doubts just inverts an assurance case. Consider the assurance case shown in Figure 9 
for the claim that flipping a switch will turn the light on.4 The assurance argument now is if those 
failures are eliminated then the light will turn on. 

 
4  http://blog.sei.cmu.edu/post.cfm/eliminative-argumentation-a-means-for-assuring-confidence-in-safety-critical-

systems 
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Figure 9: Light Bulb Example 

The claim is invalid if there is no power, if the switch is not connected, or if the bulb is defective. 
Those conditions rebut the claim as shown Figure 10. The assurance argument now is if those 
failures are eliminated then the light will turn on. The confidence of the assurance now depends 
on our confidence in the statement that there are no other reasons for a failure. 

 

Figure 10: Light Bulb Rebutters 

Doubts can also be raised on the evidence that a light bulb is functional as shown in Figure 11. 
The evidence given for a functional light bulb is that that it does not rattle when shaken, i.e., the 
filament is intact. The validity of that evidence can be undermined by an examiner who is hard of 
hearing or has headphones on. The validity of the evidence argument is undercut by an LED bulb 
as such does not rattle when defective.  
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Figure 11: Expanded Confidence Map 

4.2 Reliability Validation and Improvement Framework 

Embedded software responsible for system safety and reliability is experiencing exponential 
growth in complexity and size [Leveson 2004a, Dvorak 2009], making it a challenge to qualify 
and certify the systems [Boydston 2009] and exceeding the capabilities of experts to justify a level 
of confidence based on their analysis. Confidence is increased when expertise can be replaced by 
formal analysis. 

The SEI has developed a reliability validation and improvement framework to provide a founda-
tion for addressing the challenges of qualifying software-reliant safety-critical systems.5 The 
framework draws on multiple software studies to identify four technologies that are incorporated 
into the framework. 

Table 5: Reliability Framework Technologies 

Specification of system and software requirements in a manner to allow for completeness and consistency checking 
as well as other predictive analyses: For example, group requirements into mission requirements (operation under 
nominal conditions) and safety-criticality requirements (operation under hazardous conditions) rather using the more 
traditional grouping of functional and nonfunctional requirements. 

Use of architecture-centric, model-based engineering to model intended (managed) interactions between system 
components, including interactions among the physical system, the computer system, and the embedded software 
system 

Use of static analysis in the form of formal methods to complement testing and simulation as evidence of meeting 
mission and safety-criticality requirements. Such analysis can validate completeness and consistency of system 
requirements, architectural designs, detailed designs, and implementation and ensure that requirements and design 
constraints are met. 

Use of system and software assurance throughout the development lifecycle to provide justified confidence in claims 
supported by evidence that mission and safety-criticality requirements have been met by the system design and 
implementation. Assurance cases systematically manage such evidence (e.g., reviews, static analysis, and testing) 
and take into consideration the context and assumptions. 

The next section suggests how aspects of these four technologies can be incorporated into a soft-
ware reliability improvement plan for non-safety critical systems. 

 
5  Funded by U.S. Army Aviation and Missile Research Development and Engineering Center (AMRDEC) Aviation 

Engineering Directorate (AED) 
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4.3  Incorporating into Design Reviews 

Activities in the design phase of a custom developed system should identify possible failure 
modes and how they might affect operations. The causes of such failure modes can be a combina-
tion of those from the operational environment and those associated with software defects.  

The design for a software-intensive system is usually an incremental process. A proposed design 
that mitigates a particular failure mode can introduce new ones. The expense of a high-assurance 
mitigation may lead to requirement changes or require additional time to evaluate less-expensive 
alternatives.  

The conclusion of a formal design review should be based on more than opinion. An assurance 
case provides a way to systematically do the analysis. Software intensive systems are complex, 
and it should not be surprising that the analysis done by even an expert designer could be incom-
plete and has overlooked a hazard or made simplifying but invalid development and operating 
assumptions. The use of eliminative induction as described in Section 4.1 provides a systematic 
way to look for exceptions for the claim, the evidence, or the arguments used to justify the engi-
neering decisions incorporated in a design. 

Summary 

The organization of an assurance case is often organized around claims that are derived from re-
quirements. The subclaims are positive statements such as “The health risk of a drug overdose has 
been sufficiently mitigated.” To find the mistakes that might have occurred in constructing the 
assurance case, raise doubts about the subclaims, the arguments for the subclaims, and about the 
evidence provided.  
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5 Assuring Software Reliability  

Meeting software reliability requirements requires a different approach than that used for hard-
ware reliability. The failure distribution curves as shown in Figure 1 are quite different as hard-
ware failures over time are associated with wear while software failures result from changes in 
usage, in operating conditions, or new features added by a software upgrade. A software system 
with defects can operate perfectly for long period of time until what might be a rare combination 
of conditions lead to a failure. The analysis a software failure should not assume there is a root 
cause. Reliability requirements often involve both hardware and software as with infusion pumps. 
The pump’s software also has to manage faults created by a sensor failure. Software reliability for 
military systems typically involves both hardware and software faults.  

There are lessons that can be learned from hardware reliability analysis. Techniques such as mod-
eling and simulations are frequently applied for hardware reliability. The objective is to identify 
potential stress points during the design of the hardware component and not after its assembly. 
The same techniques can be applied to eliminate software reliability defects during requirements 
and design phases of the system development lifecycle.  

A summary of the results of a number of studies on where errors are introduced in the develop-
ment lifecycle, when they are discovered, and the cost of the resulting rework is shown in Figure 
12 [Feiler 2012]. Requirement and design errors dominate. 

 

Figure 12: Error Leakage Rates Across Development Phases 

5.1 Requirement Errors 

Requirement problems are not unique to reliability. One study [Hayes 2003] showed that the top 
six categories of requirements errors are  

1. omitted/missing requirements (33%) 

2. incorrect requirements (24%) 

3. incomplete requirements (21%) 
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4. ambiguous requirements (6.3%) 

5. over specified requirements (6.1%) 

6. inconsistent requirements (4.7%). 

The DoD RAM Guide warning on unrealistic or poorly defined requirements is also applicable. 
Recovery from a failure for a software intensive system can depend on determining the cause 
which may not be feasible under the operating conditions. An acquisition could require automated 
diagnostics, but complex systems unfortunately can fail in complex ways that can be beyond the 
capabilities of automatic recovery mechanisms. Requirements for alternatives for a disabled ser-
vice such as those shown for the power grid failure should also be considered. The development 
of detailed mission scenarios such as those for close air support that identify known system fail-
ures assists both the acquirer and developer [Ellison 2010]. 

An example of missing requirement could be omitting fault tolerance requirements for a user ap-
plication. For example, consider the design of an application that supports multiple user actions, 
each displayed in its own window. A web browser is a good example. Reliability is degraded if a 
failure in any one of those activities leads to a failure for all the user actions. Google’s Chrome 
browser improves reliability by using a separate process thread for each window. A failure now 
should only affect one user activity.  

A user application with an availability requirement should also include a requirement verifying 
that requirement. We know how to use simulations and models to justify that a software design 
satisfies performance claims. Such evidence would most likely be required when computing re-
sources are constrained, but we might not ask for such a justification for a user application. For 
example, computing resources are allocated for each instance of a browser window. Multiple 
windows could be competing for access to the same service. How well are resources managed as 
windows are created and deleted? A requirement for a justification such as by simulation of the 
proposed approach during design avoids surprising behavior when the application is deployed.  

As part of a requirement elicitation, an acquisition should consider the impact on the mission for 
possible system failure states and the desired recovery. A recommendation that was noted in Sec-
tion 4.2 of Feiler (2012) is to group requirements into mission requirements (operation under 
nominal conditions) and requirements for operating under adverse conditions, rather using the 
more traditional grouping of functional and nonfunctional requirements [Feiler 2012]. Specifying 
operations for normal and adverse conditions is essential for mission threads such as close air 
support (CAS) and time sensitive targeting (TST). An analysis described in Ellison identified a 
gap between theory and practice [Ellison 2010]. The DoD mission thread documentation repre-
sented an “idealized” view of the operational environment; the documentation rarely considered 
possible failures and often assumed significant homogeneity of computing infrastructure and mili-
tary hardware. In practice, a successful execution of these mission threads depended on using 
available equipment and often on ad hoc measures to work around resource limitations. Recovery 
requirements had to reflect the resources available.  
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5.2 Available Expertise 

Contracting decisions can avert effort from the approaches that can increase software reliability. 
For example, the U.S. Army Materiel Systems Analysis Activity (AMSAA) provides funding for 
hardware reliability-improvement programs that use modeling, analysis, and simulation to identi-
fy and reduce design defects before the system is built. No such reliability improvement programs 
existed for software. Instead AMSAA funding for software focuses on finding and removing code 
faults through code inspection and testing [Goodenough 2010].  

But funding a software reliability improvement program is realistic only if the recipient knows 
what could supplement code inspections and testing. For example, how could we apply modeling, 
an analysis technique, or simulation to evaluate a software design before a system is implement-
ed? The technologies listed in Table 5 improve software reliability for safety-critical systems but 
at this time are on the very leading edge of practice.  

In all likelihood, most of manufacturers of infusion pumps thought they were doing a good job 
and had difficulty finding examples for how software reliability for such devices could be im-
proved in advance of testing.  

5.2.1 Fault Tolerance Example 

The domain expertise required to analyze the power grid failure was readily available. Equivalent 
expertise required to analyze the reliability for complex system faults is likely not as prevalent. 

The objectives of a NASA website6 that described actual electronic systems failure scenarios sug-
gests that for some aspects of system assurance, that expertise can be hard to find. 

The objective of that effort is to  

 Provide a publicly accessible body of knowledge that can be used to transfer experience 
among designers. 

 Identify failures which are addressed or not addressed by current formal methodologies and 
tools.  

The scenarios selection criteria include  

 scenarios that many designers believe cannot happen 

 scenarios not published elsewhere or with lessons learned omitted 

The importance of experience is demonstrated in the following example of a NASA controller 
failure. 

The controller required fault tolerance for a processor failure. The design used redundancy in the 
form of four processors and a voting mechanism. But a failure occurred when a technician re-
placed a resistor with one with the wrong value in a bus terminator for the bus used by the four 
control computers. The incorrect resistor value led those controllers to process the data differently 
depending on where they were connected to that bus. The result was a 2-2 voting tie. 
 
6  https://c3.nasa.gov/dashlink/resources/624/ 
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The root cause was not the technician’s error, but a software failure. All processors produced cor-
rect output based on their input, but two had been eliminated in the voting. The voting mechanism 
was designed to handle processor failures and had not considered faults which could lead to dif-
ferent inputs to the four processors. This could be an example of a fault that a designer believed 
could not happen.  

According to the analysis provided by HP, formal analysis methods existed to resolve such con-
flicts (the well-known Byzantine fault). If the software design had include one of those methods, 
the processors would have stayed in agreement and the failures would not have occurred. Fortu-
nately, the failure occurred in the laboratory. 

It is likely that only those with extensive experience with such failures would have identified the 
omission of such faults during a design review. This example supports the DoD RAM Guide’s 
recommendation for formal design reviews and emphasizes the importance of using reviewers 
with extensive domain experience. 

5.2.2 Improving Availability of Security Expertise  

Efforts to improve software security in acquired software also encountered problems with limited 
sources for the necessary expertise. But there are now resources available that enable a software 
development organization to reduce security risks during development.  

An organization that wants to learn which software defects could be exploited only has to review 
MITRE’s Common Weakness Enumeration (CWE), which has cataloged more than 900 software 
weaknesses that have been used in successful attacks. In addition, the CWE suggests ways to mit-
igate each of the weaknesses.  

Building Security In Maturity Model (BSIMM) provides examples of current secure software de-
velopment practices used by a group of large corporations [BSIMM 2013]. By the fall of 2013, 
the BSIMM had surveyed 52 large corporations who were executing security improvement initia-
tives. The BSIMM objective was not to find the best practices but simply to document current 
practice and track the changes in those practices over time. The BSIMM collection of practices is 
characterized more by diversity than commonality. The commonality among the surveyed organi-
zations was more in terms of objectives for training, for maintaining knowledge of attacks, and for 
capabilities required for architecture analysis and configuration management. Examples of some 
of the objectives are shown in Table 6.  

The entries in that table suggest equivalent contractor capabilities that could be appropriate for 
software reliability. For example, the items listed under Strategy and Metrics are applicable to 
software reliability. The reliability equivalent to Attack Model activities could be building and 
maintaining a repository of design, implementation, testing, and integration guidance for reliabil-
ity issues that could occur in the types of systems an organization builds. The objectives for Secu-
rity Features and Design in Table 6 are applicable for reliability. Extensive experience and exper-
tise is necessary to resolve a number of the reliability issues for complex systems.  
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Table 6: BSIMM Examples 

Objective Activities 

Strategy and Metrics 

Attain a common understanding of 
direction and strategy 

Publish process 
Establish checkpoints compatible with existing development practices and 
begin gathering the input necessary for making a go/no go decision  

Align behavior with strategy and 
verify adherence 

Publish data about software security internally 
Enforce checkpoints with measurements and track exceptions 

Attack Models 

Create attack and data asset 
knowledge base 

Build and maintain a top N possible attacks list 
Collect and publish attack stories – increases awareness 

Provide information on attackers 
and relevant attacks 

Build attack patterns and abuse cases tied to potential attackers 
Create technology-specific attack patterns 

Security Features and Design 

Publish security features and archi-
tectures 

Build and publish security features – build it once and reuse it 

Build and identify security solutions Create capability to solve difficult design problems 

Summary 

We do not have the same breadth of information on hazards and mitigations for software reliabil-
ity as we have for software security, which means that improving the reliability of software sys-
tems will have a learning curve for both acquirers and suppliers. Descriptions and analysis of real 
system failures are valuable, such as those that appear on the NASA website referenced in section 
5.2.1. 
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6 Conclusion 

Software reliability is the probability that no failures occur over a period of time. Mitigating spe-
cific high-risk faults is the province of system and software assurance. The overall assurance of 
systems can be improved by assessing it during the development of a system. Requirement and 
design errors not found until testing and system integration are expensive to rectify. Showing  
during a design review how an engineering decision mitigates a specific hazard should reduce the 
occurrence of design errors being found late in the development lifecycle.  

Doing such engineering analysis depends on having a concise and understandable way to describe 
the associations among engineering decisions and fault management. An assurance case provides 
a concise and understandable way to describe them to experts and non-experts, and assurance case 
analysis techniques such as eliminative induction can provide specific reasons for a design weak-
ness.  

Improving the reliability of software systems will have a learning curve for both acquirers and 
suppliers. The failure of a complex system is likely the result of a concurrence of multiple events. 
There are currently only limited resources available to help developers analyze and mitigate such 
failures. The limited knowledge base also increases the difficulties for an acquirer to determine 
the feasibility of reliability requirements.  

This section concludes with a discussion of SEI experience applying assurance case techniques to 
the early phases of the system development lifecycle of a DoD system. That experience suggests 
that the assurance case technique is a powerful tool for analyzing systems. Assurance cases give 
managers answers about design progress that are demonstrably rooted in facts and data instead of 
opinions based on hope and best intentions. Techniques such as the confidence map described in 
Section 4 provide a concise and understandable way to show the effects of a specific development 
shortfall and to track progress between reviews.  

The SEI has applied assurance case techniques in the early phases of system development life 
cycle for a large DoD system of systems (SoS) as described in Blanchette [Blanchette 2009]. The 
general approach is applicable for less complex systems. The SEI team analyzed the software con-
tributions to the definitive characterization of operational needs – the SoS key performance pa-
rameters (KPPs). Within the DoD, KPPs are the system characteristics essential for delivery of an 
effective military capability. All DoD projects have some number of KPPs to satisfy in order to be 
considered acceptable from an operational perspective. For example, any DoD system that must 
send or receive information externally is required to fulfill the Net-Ready KPP (NR-KPP). The 
top claim is that the SoS supports Net-Centric military operations. The subclaims of that node are 

 The SoS is able to enter and be managed in the network. 

 The SoS is able to exchange data in a secure manner to enhance mission effectiveness. 

 The SoS continuously provides survivable, interoperable, secure, and operationally effective 
information exchanges. 

When performing an assurance case analysis of a completed design, the outcome is rather black-
and-white: either design artifacts are complete and sufficient, or they are not. Reviewing an in-
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progress design requires a more nuanced approach, one that reflects relative risk, since the design 
artifacts will necessarily be in different stages of completion. For this example, the SEI used a 
simple and familiar stoplight approach to scoring (so named for the red-yellow-green coloring), 
where the color red designates a relatively high risk area, the color yellow designates a relatively 
medium risk area, and the color green indicates a relatively low risk area. The rules for assigning 
colors are slightly different at the evidence level than they are at the level of the claims, as is 
shown in Figure 13. 

 

Figure 13: Scoring Legend 

When the subclaims are not all uniformly the same color, an analyst must make a subjective deci-
sion on the risk to assign to a node. For example, an analyst might conclude a medium risk given 
the following doubts raised about the evidence and arguments. 

1. Only a subset of information exchanges has been implemented to date. 

2. The noted risks are, at best, medium at this time.  

3. The security architecture has not been completely propagated across the SoS. 

4. An evaluation of the security architecture revealed some design choices that will prevent 
system accreditation. 

5. Preliminary field tests indicate some information exchanges are exceeding prescribed time-
lines for completion. 

The overall analysis tree might appear as shown in Figure 14 in a confidence map. The color as-
signed represents an analyst’s judgment on the seriousness of the doubts identified for a specific 
claim. It can provide both program and developer managers a sort of roadmap for prioritizing and 
addressing the issues. 
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Figure 14: KPP Scored Diagram 

For example, an item may be red because 

 It is scheduled to be addressed at a later date. 

 The contractor is significantly behind schedule. 

 A redesign is required because of changes in requirements. 

 The problem is harder than anticipated. 

 There is a significant risk that the current approach will not meet requirements: The reason 
can be a poor design or unrealistic requirements. 

Such a confidence map provides a concise and understandable way to show the effects of a specif-
ic development shortfall and to track progress between reviews.  

Experience with actual projects suggests that the assurance case technique is a powerful tool for 
analyzing a large and complex SoS software design. It provides a means of taking a crosscutting 
look at a SoS, a perspective often achieved only with great effort even in less complex develop-
ment projects. Assurance cases give managers answers about design progress that are demonstra-
bly rooted in facts and data instead of opinions based on hope and best intentions. 
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